
Resit Exam — Ordinary Differential Equations (WIGDV-07)

Thursday 28 January 2016, 14.00h–17.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (10 points)

Solve the following differential equation:

y′ =
y2 + 2xy

x2
, x > 0

Problem 2 (3 + 6 + 6 points)

Consider the differential equation

e−x + y + xy + (x+ 2e−x)
dy

dx
= 0

(a) Show that the equation is not exact.

(b) Compute an integrating factor of the form M(x, y) = φ(x).

(c) Solve the differential equation.

Problem 3 (10 + 5 points)

Consider the following inhomogeneous system:

dy

dt
=

[

0 1
−5 −4

]

y +

[

0
10et

]

(a) Compute a real-valued fundamental matrix for the homogeneous equation.

(b) Compute a particular solution of the inhomogeneous equation.

Hint: make an educated guess!
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Problem 4 (5 + 5 + 5 + 5 points)

Let a > 0 be arbitrary, and let C([0, a]) denote the space of continuous functions on
the interval [0, a]. The norm

‖y‖ = sup
{

|y(x)|e−3x : x ∈ [0, a]
}

turns C([0, a]) into a Banach space. Consider the integral operator

T : C([0, a]) → C([0, a]), (Ty)(x) = x+

∫ x

0

sin2(y(t)) dt.

Prove the following statements:

(a)
∣

∣ sin2(y)− sin2(z)
∣

∣ ≤ 2
∣

∣y − z
∣

∣ ∀ y, z ∈ R.

(b)
∣

∣(Ty)(x)− (Tz)(x)
∣

∣ ≤
2(e3x − 1)

3
‖y − z‖ ∀ y, z ∈ C([0, a]), x ∈ [0, a]

(c) ‖Ty − Tz‖ ≤
2

3
‖y − z‖ ∀ y, z ∈ C([0, a])

(d) The initial value problem y′ = 1 + sin2(y) with y(0) = 0 has a unique solution
on the interval [0, a].

Problem 5 (3 + 12 points)

Consider the second-order equation:

(2x+ 1)u′′ − 4(x+ 1)u′ + 4u = 0

(a) Compute the value of λ for which u1(x) = eλx is a solution.

(b) Compute a second solution of the form u2(x) = c(x)u1(x) such that u1 and u2

are linearly independent.

Problem 6 (15 points)

Compute all eigenvalues λ and corresponding eigenfunctions u of the following
boundary value problem:

u′′ + λu = 0, u(0)− u′(0) = 0, u(π)− u′(π) = 0

End of test (90 points)
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Solution of Problem 1 (10 points)

Solution 1. We can rewrite the equation as

dy

dx
=

(y

x

)2

+
2y

x

Taking the substitution u = y/x gives the new differential equation

du

dx
=

u2 + u

x

(2 points)

Separating the variables gives:

∫

1

u(u+ 1)
du =

∫

1

x
dx ⇒

∫

1

u
−

1

u+ 1
du =

∫

1

x
dx

(2 points)

Computing the integrals gives

log |u| − log |1 + u| = log |x|+ C ⇒ log

∣

∣

∣

∣

u

1 + u

∣

∣

∣

∣

= log |x|+ C = log(x) + C

where we have used the assumption x > 0.
(4 points)

Solving for u and then for y gives

u

1 + u
= Kx ⇒ u =

Kx

1−Kx
⇒ y =

Kx2

1−Kx

where K = ±eC is an arbitrary constant.
(2 points)

Solution 2. We can rewrite the equation as

dy

dx
=

2

x
· y +

1

x2
· y2

in which we recognize a Bernoulli equation with α = 2. Therefore, we take the
substitution z = y1−α = y−1.
(1 point)

The new variable satisfies a linear differential equation:

z′ +
2

x
· z = −

1

x2

(3 points)
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We can solve this equation by multiplying with the integrating factor x2:

x2z′ + 2xz = −1 ⇒
[

x2z
]′

= −1 ⇒ x2z = −x+ C ⇒ z =
C − x

x2

(5 points)

Finally, we obtain

y =
1

z
=

x2

C − x

(1 point)

This is equivalent with the previous solution via the relation C = 1/K.
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Solution of Problem 2 (3 + 6 + 6 points)

(a) Define the functions

g(x, y) = e−x + y + xy and h(x, y) = x+ 2e−x

Then gy = 1 + x and hx = 1− 2e−x. Since gy 6= hx the equation is not exact.
(3 points)

(b) The function M(x, y) = φ(x) is an integrating factor if and only if

∂

∂y

[

φ(x)(e−x + y + xy)
]

=
∂

∂x

[

φ(x)(x+ 2e−x)
]

Expanding the derivatives gives

φ(x)(1 + x) = φ′(x)(x+ 2e−x) + φ(x)(1− 2e−x)

or, equivalently,
φ′(x) = φ(x)

(5 points)

Therefore, an integrating factor is given by M(x, y) = ex.
(1 point)

(c) After multiplication with the integrating factor the equation reads as

1 + yex + xyex + (xex + 2)
dy

dx
= 0

Define a potential function by

F (x, y) =

∫

xex + 2 dy = xyex + 2y + C(x)

(3 points)

This function should also satisfy

Fx = 1 + yex + xyex ⇒ yex + xyex + C ′(x) = 1 + yex + xyex

From this it follows that C ′(x) = 1 so we can take C(x) = x.
(2 points)

Finally, the solution in implicit form reads as

xyex + 2y + x = K

where K is an arbitrary constant.
(1 point)
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Solution of Problem 3 (10 + 5 points)

(a) First, compute the characteristic polynomial of the coefficient matrix:

det

[

−λ 1
−5 −4 − λ

]

= λ2 + 4λ+ 5

Hence, the eigenvalues of the coefficient matrix are λ = −2± i.
(3 points)

For λ = −2 + i an associated eigenvector is given by v =
[

1 −2 + i
]⊤

. Since
the matrix is real an associated eigenvector for λ = −2− i is given by v̄.
(3 points)

We can write two linearly independent solutions of the homogeneous equation:

y1 = Re(e(−2+i)tv) =

[

e−2t cos(t)
e−2t(−2 cos(t)− sin(t))

]

y2 = Im(e(−2+i)tv) =

[

e−2t sin(t)
e−2t(−2 sin(t) + cos(t))

]

(3 points)

This gives the following fundamental matrix:

Y (t) = e−2t

[

cos(t) sin(t)
−2 cos(t)− sin(t) −2 sin(t) + cos(t)

]

(1 point)

(b) We use the following educated guess:

yp =

[

Aet

Bet

]

where A and B are undetermined coefficients. Substitution in the differential
equation gives

[

Aet

Bet

]

=

[

Bet

(−4A− 5B + 10)et

]

for which the only solution is A = B = 1.
(5 points)
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Solution of Problem 4 (5 + 5 + 5 + 5 points)

(a) The Mean Value Theorem implies that for all y, z ∈ R there exists a point t
between y and z such that

sin2(y)− sin2(z) = 2 sin(t) cos(t)(y − z)

(3 points)

Taking absolute values on each side gives the desired result.
(2 points)

(b) Let y, z ∈ C([0, a]) be arbitrary. Using the triangle inequality and part (a) gives

∣

∣(Ty)(x)− (Tz)(x)
∣

∣ =

∣

∣

∣

∣

∫ x

0

sin2(y(t))− sin2(z(t)) dt

∣

∣

∣

∣

≤

∫ x

0

∣

∣ sin2(y(t))− sin2(z(t))
∣

∣ dt

≤

∫ x

0

2
∣

∣y(t)− z(t)
∣

∣ dt

(3 points)

Noting that |y(t)− z(t)|e−3t ≤ ‖y − z‖ for all t ∈ [0, a] gives

∣

∣(Ty)(x)− (Tz)(x)
∣

∣ ≤

∫ x

0

2
∣

∣y(t)− z(t)
∣

∣e−3te3t dt

≤ 2‖y − z‖

∫ x

0

e3t dt

=
2(e3x − 1)

3
‖y − z‖

(2 points)

(c) From part (b) it follows that

∣

∣(Ty)(x)− (Tz)(x)
∣

∣e−3x ≤
2(1− e−3x)

3
‖y − z‖ ≤

2

3
‖y − z‖

Taking the supremum over the interval [0, a] gives the desired inequality.
(5 points)

(d) Note that we have the following equivalences:

Ty = y ⇔ y(x) = x+

∫ x

0

sin2(y(t)) dt ⇔

{

y′ = 1 + sin2(y)
y(0) = 0

From part (c) it follows that the operator T : C([0, a]) → C([0, a]) is a contrac-
tion. Therefore, Banach’s fixed point theorem implies the existence of a unique
y ∈ C([0, a]) such that Ty = y, which implies the existence and uniqueness
result for the initial value problem.
(5 points)
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Solution of Problem 5 (3 + 12 points)

Consider the second-order equation:

(2x+ 1)u′′ − 4(x+ 1)u′ + 4u = 0

(a) We have
u1 = eλx ⇒ u′

1 = λeλx ⇒ u′′

1 = λ2eλx

Substitution in the differential equation gives

λ2(2x+ 1)eλx − 4λ(x+ 1)eλx + 4eλx = 0 ⇒ 2λ(λ− 2)x+ (λ− 2)2 = 0

The only solution is λ = 2 which gives u1(x) = e2x.
(3 points)

(b) We have

u2 = c(x)e2x ⇒ u′

2 =
[

c′(x) + 2c(x)
]

e2x

⇒ u′′

2 =
[

c′′(x) + 4c′(x) + 4c(x)
]

e2x

Substitution in the differential equation shows that u2 is a solution if and only
if the function c(x) satisfies the following equation:

(2x+ 1)c′′(x) + 4xc′(x) = 0

(3 points)

Setting z(x) = c′(x) gives an equation with separated variables:

dz

dx
= −

4x

2x+ 1
z =

(

−2 +
2

2x+ 1

)

z

(2 points)

The solution is given by

z(x) = K exp (−2x+ log |2x+ 1|) = K(2x+ 1)e−2x

(2 points)

Finally, integration by parts gives

c(x) =

∫

K(2x+ 1)e−2x = −K(x+ 1)e−2x + C

An obvious choice for the constants is K = −1 and C = 0 which gives u2(x) =
x+ 1 as a second solution.
(2 points)

Clearly, u1 and u2 are linearly independent since an exponential function is not
a constant multiple of a linear function.
(1 point)
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Solution of Problem 6 (15 points)

The case λ = 0. This gives the general solution u = c1x + c2. The boundary
conditions imply that

[

−1 1
π − 1 1

] [

c1
c2

]

=

[

0
0

]

Since the coefficient matrix has nonzero determinant we conclude that c1 = c2 = 0
which only gives the trivial solution u = 0. Therefore, λ = 0 is not an eigenvalue.
(3 points)

The case λ < 0. If we write λ = −µ2 then we get the general solution

u = c1e
µx + c2e

−µx

The boundary conditions imply that

[

1− µ 1 + µ
(1− µ)eµπ (1 + µ)e−µπ

] [

c1
c2

]

=

[

0
0

]

(2 points)

For the existence of nontrivial solutions we need the determinant of the coefficient
matrix to be zero:

(1− µ2)(e−µπ − eµπ) = 0 ⇔ µ = ±1

Taking µ = 1 gives the eigenvalue λ0 = −1 and the corresponding eigenfunction
u0 = ex.
(4 points)

The case λ > 0. If we write λ = µ2 then we get the general solution

u = c1 cos(µx) + c2 sin(µx)

The boundary conditions imply that

[

1 −µ
cos(µπ) + µ sin(µπ) sin(µπ)− µ cos(µπ)

] [

c1
c2

]

=

[

0
0

]

(2 points)

For the existence of nontrivial solutions we need the determinant of the coefficient
matrix to be zero:

(1 + µ2) sin(µπ) = 0 ⇔ µ ∈ Z

Taking µ = n ∈ N gives the eigenvalues λn = n2 and the corresponding eigenfunc-
tions un = n cos(nx) + sin(nx).
(4 points)
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