Resit Exam - Ordinary Differential Equations (WIGDV-07)

Thursday 28 January 2016, 14.00h-17.00h
University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. If p is the number of marks then the exam grade is $G=1+p / 10$.

Problem 1 (10 points)

Solve the following differential equation:

$$
y^{\prime}=\frac{y^{2}+2 x y}{x^{2}}, \quad x>0
$$

Problem $2(3+6+6$ points $)$
Consider the differential equation

$$
e^{-x}+y+x y+\left(x+2 e^{-x}\right) \frac{d y}{d x}=0
$$

(a) Show that the equation is not exact.
(b) Compute an integrating factor of the form $M(x, y)=\phi(x)$.
(c) Solve the differential equation.

Problem 3 (10 +5 points)

Consider the following inhomogeneous system:

$$
\frac{d \mathbf{y}}{d t}=\left[\begin{array}{rr}
0 & 1 \\
-5 & -4
\end{array}\right] \mathbf{y}+\left[\begin{array}{c}
0 \\
10 e^{t}
\end{array}\right]
$$

(a) Compute a real-valued fundamental matrix for the homogeneous equation.
(b) Compute a particular solution of the inhomogeneous equation.

Hint: make an educated guess!

Problem $4(5+5+5+5$ points)

Let $a>0$ be arbitrary, and let $C([0, a])$ denote the space of continuous functions on the interval $[0, a]$. The norm

$$
\|y\|=\sup \left\{|y(x)| e^{-3 x}: x \in[0, a]\right\}
$$

turns $C([0, a])$ into a Banach space. Consider the integral operator

$$
T: C([0, a]) \rightarrow C([0, a]), \quad(T y)(x)=x+\int_{0}^{x} \sin ^{2}(y(t)) d t .
$$

Prove the following statements:
(a) $\left|\sin ^{2}(y)-\sin ^{2}(z)\right| \leq 2|y-z| \quad \forall y, z \in \mathbb{R}$.
(b) $|(T y)(x)-(T z)(x)| \leq \frac{2\left(e^{3 x}-1\right)}{3}\|y-z\| \quad \forall y, z \in C([0, a]), x \in[0, a]$
(c) $\|T y-T z\| \leq \frac{2}{3}\|y-z\| \quad \forall y, z \in C([0, a])$
(d) The initial value problem $y^{\prime}=1+\sin ^{2}(y)$ with $y(0)=0$ has a unique solution on the interval $[0, a]$.

Problem 5 ($3+12$ points)

Consider the second-order equation:

$$
(2 x+1) u^{\prime \prime}-4(x+1) u^{\prime}+4 u=0
$$

(a) Compute the value of λ for which $u_{1}(x)=e^{\lambda x}$ is a solution.
(b) Compute a second solution of the form $u_{2}(x)=c(x) u_{1}(x)$ such that u_{1} and u_{2} are linearly independent.

Problem 6 (15 points)

Compute all eigenvalues λ and corresponding eigenfunctions u of the following boundary value problem:

$$
u^{\prime \prime}+\lambda u=0, \quad u(0)-u^{\prime}(0)=0, \quad u(\pi)-u^{\prime}(\pi)=0
$$

End of test (90 points)

Solution of Problem 1 (10 points)

Solution 1. We can rewrite the equation as

$$
\frac{d y}{d x}=\left(\frac{y}{x}\right)^{2}+\frac{2 y}{x}
$$

Taking the substitution $u=y / x$ gives the new differential equation

$$
\frac{d u}{d x}=\frac{u^{2}+u}{x}
$$

(2 points)

Separating the variables gives:

$$
\int \frac{1}{u(u+1)} d u=\int \frac{1}{x} d x \quad \Rightarrow \quad \int \frac{1}{u}-\frac{1}{u+1} d u=\int \frac{1}{x} d x
$$

(2 points)

Computing the integrals gives

$$
\log |u|-\log |1+u|=\log |x|+C \quad \Rightarrow \quad \log \left|\frac{u}{1+u}\right|=\log |x|+C=\log (x)+C
$$

where we have used the assumption $x>0$.
(4 points)
Solving for u and then for y gives

$$
\frac{u}{1+u}=K x \quad \Rightarrow \quad u=\frac{K x}{1-K x} \quad \Rightarrow \quad y=\frac{K x^{2}}{1-K x}
$$

where $K= \pm e^{C}$ is an arbitrary constant.

(2 points)

Solution 2. We can rewrite the equation as

$$
\frac{d y}{d x}=\frac{2}{x} \cdot y+\frac{1}{x^{2}} \cdot y^{2}
$$

in which we recognize a Bernoulli equation with $\alpha=2$. Therefore, we take the substitution $z=y^{1-\alpha}=y^{-1}$.
(1 point)
The new variable satisfies a linear differential equation:

$$
z^{\prime}+\frac{2}{x} \cdot z=-\frac{1}{x^{2}}
$$

(3 points)

We can solve this equation by multiplying with the integrating factor x^{2} :

$$
x^{2} z^{\prime}+2 x z=-1 \quad \Rightarrow \quad\left[x^{2} z\right]^{\prime}=-1 \quad \Rightarrow \quad x^{2} z=-x+C \quad \Rightarrow \quad z=\frac{C-x}{x^{2}}
$$

(5 points)

Finally, we obtain

$$
y=\frac{1}{z}=\frac{x^{2}}{C-x}
$$

(1 point)
This is equivalent with the previous solution via the relation $C=1 / K$.

Solution of Problem $2(3+6+6$ points)
(a) Define the functions

$$
g(x, y)=e^{-x}+y+x y \quad \text { and } \quad h(x, y)=x+2 e^{-x}
$$

Then $g_{y}=1+x$ and $h_{x}=1-2 e^{-x}$. Since $g_{y} \neq h_{x}$ the equation is not exact. (3 points)
(b) The function $M(x, y)=\phi(x)$ is an integrating factor if and only if

$$
\frac{\partial}{\partial y}\left[\phi(x)\left(e^{-x}+y+x y\right)\right]=\frac{\partial}{\partial x}\left[\phi(x)\left(x+2 e^{-x}\right)\right]
$$

Expanding the derivatives gives

$$
\phi(x)(1+x)=\phi^{\prime}(x)\left(x+2 e^{-x}\right)+\phi(x)\left(1-2 e^{-x}\right)
$$

or, equivalently,

$$
\phi^{\prime}(x)=\phi(x)
$$

(5 points)
Therefore, an integrating factor is given by $M(x, y)=e^{x}$. (1 point)
(c) After multiplication with the integrating factor the equation reads as

$$
1+y e^{x}+x y e^{x}+\left(x e^{x}+2\right) \frac{d y}{d x}=0
$$

Define a potential function by

$$
F(x, y)=\int x e^{x}+2 d y=x y e^{x}+2 y+C(x)
$$

(3 points)

This function should also satisfy

$$
F_{x}=1+y e^{x}+x y e^{x} \Rightarrow y e^{x}+x y e^{x}+C^{\prime}(x)=1+y e^{x}+x y e^{x}
$$

From this it follows that $C^{\prime}(x)=1$ so we can take $C(x)=x$.
(2 points)
Finally, the solution in implicit form reads as

$$
x y e^{x}+2 y+x=K
$$

where K is an arbitrary constant.
(1 point)

Solution of Problem 3 ($10+5$ points)

(a) First, compute the characteristic polynomial of the coefficient matrix:

$$
\operatorname{det}\left[\begin{array}{rr}
-\lambda & 1 \\
-5 & -4-\lambda
\end{array}\right]=\lambda^{2}+4 \lambda+5
$$

Hence, the eigenvalues of the coefficient matrix are $\lambda=-2 \pm i$.
(3 points)
For $\lambda=-2+i$ an associated eigenvector is given by $\mathbf{v}=\left[\begin{array}{ll}1 & -2+i\end{array}\right]^{\top}$. Since the matrix is real an associated eigenvector for $\lambda=-2-i$ is given by $\overline{\mathbf{v}}$.
(3 points)
We can write two linearly independent solutions of the homogeneous equation:

$$
\begin{aligned}
& \mathbf{y}_{1}=\operatorname{Re}\left(e^{(-2+i) t} \mathbf{v}\right)=\left[\begin{array}{c}
e^{-2 t} \cos (t) \\
e^{-2 t}(-2 \cos (t)-\sin (t))
\end{array}\right] \\
& \mathbf{y}_{2}=\operatorname{Im}\left(e^{(-2+i) t} \mathbf{v}\right)=\left[\begin{array}{c}
e^{-2 t} \sin (t) \\
e^{-2 t}(-2 \sin (t)+\cos (t))
\end{array}\right]
\end{aligned}
$$

(3 points)

This gives the following fundamental matrix:

$$
Y(t)=e^{-2 t}\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-2 \cos (t)-\sin (t) & -2 \sin (t)+\cos (t)
\end{array}\right]
$$

(1 point)
(b) We use the following educated guess:

$$
\mathbf{y}_{p}=\left[\begin{array}{l}
A e^{t} \\
B e^{t}
\end{array}\right]
$$

where A and B are undetermined coefficients. Substitution in the differential equation gives

$$
\left[\begin{array}{l}
A e^{t} \\
B e^{t}
\end{array}\right]=\left[\begin{array}{c}
B e^{t} \\
(-4 A-5 B+10) e^{t}
\end{array}\right]
$$

for which the only solution is $A=B=1$.
(5 points)

Solution of Problem $4(5+5+5+5$ points)
(a) The Mean Value Theorem implies that for all $y, z \in \mathbb{R}$ there exists a point t between y and z such that

$$
\sin ^{2}(y)-\sin ^{2}(z)=2 \sin (t) \cos (t)(y-z)
$$

(3 points)

Taking absolute values on each side gives the desired result.

(2 points)

(b) Let $y, z \in C([0, a])$ be arbitrary. Using the triangle inequality and part (a) gives

$$
\begin{aligned}
|(T y)(x)-(T z)(x)| & =\left|\int_{0}^{x} \sin ^{2}(y(t))-\sin ^{2}(z(t)) d t\right| \\
& \leq \int_{0}^{x}\left|\sin ^{2}(y(t))-\sin ^{2}(z(t))\right| d t \\
& \leq \int_{0}^{x} 2|y(t)-z(t)| d t
\end{aligned}
$$

(3 points)

Noting that $|y(t)-z(t)| e^{-3 t} \leq\|y-z\|$ for all $t \in[0, a]$ gives

$$
\begin{aligned}
|(T y)(x)-(T z)(x)| & \leq \int_{0}^{x} 2|y(t)-z(t)| e^{-3 t} e^{3 t} d t \\
& \leq 2\|y-z\| \int_{0}^{x} e^{3 t} d t \\
& =\frac{2\left(e^{3 x}-1\right)}{3}\|y-z\|
\end{aligned}
$$

(2 points)

(c) From part (b) it follows that

$$
|(T y)(x)-(T z)(x)| e^{-3 x} \leq \frac{2\left(1-e^{-3 x}\right)}{3}\|y-z\| \leq \frac{2}{3}\|y-z\|
$$

Taking the supremum over the interval $[0, a]$ gives the desired inequality. (5 points)
(d) Note that we have the following equivalences:

$$
T y=y \quad \Leftrightarrow \quad y(x)=x+\int_{0}^{x} \sin ^{2}(y(t)) d t \quad \Leftrightarrow \quad\left\{\begin{array}{ccc}
y^{\prime} & = & 1+\sin ^{2}(y) \\
y(0) & = & 0
\end{array}\right.
$$

From part (c) it follows that the operator $T: C([0, a]) \rightarrow C([0, a])$ is a contraction. Therefore, Banach's fixed point theorem implies the existence of a unique $y \in C([0, a])$ such that $T y=y$, which implies the existence and uniqueness result for the initial value problem.

(5 points)

Solution of Problem 5 ($3+12$ points)

Consider the second-order equation:

$$
(2 x+1) u^{\prime \prime}-4(x+1) u^{\prime}+4 u=0
$$

(a) We have

$$
u_{1}=e^{\lambda x} \Rightarrow u_{1}^{\prime}=\lambda e^{\lambda x} \quad \Rightarrow \quad u_{1}^{\prime \prime}=\lambda^{2} e^{\lambda x}
$$

Substitution in the differential equation gives

$$
\lambda^{2}(2 x+1) e^{\lambda x}-4 \lambda(x+1) e^{\lambda x}+4 e^{\lambda x}=0 \quad \Rightarrow \quad 2 \lambda(\lambda-2) x+(\lambda-2)^{2}=0
$$

The only solution is $\lambda=2$ which gives $u_{1}(x)=e^{2 x}$.

(3 points)

(b) We have

$$
\begin{aligned}
u_{2}=c(x) e^{2 x} & \Rightarrow u_{2}^{\prime}=\left[c^{\prime}(x)+2 c(x)\right] e^{2 x} \\
& \Rightarrow u_{2}^{\prime \prime}=\left[c^{\prime \prime}(x)+4 c^{\prime}(x)+4 c(x)\right] e^{2 x}
\end{aligned}
$$

Substitution in the differential equation shows that u_{2} is a solution if and only if the function $c(x)$ satisfies the following equation:

$$
(2 x+1) c^{\prime \prime}(x)+4 x c^{\prime}(x)=0
$$

(3 points)

Setting $z(x)=c^{\prime}(x)$ gives an equation with separated variables:

$$
\frac{d z}{d x}=-\frac{4 x}{2 x+1} z=\left(-2+\frac{2}{2 x+1}\right) z
$$

(2 points)

The solution is given by

$$
z(x)=K \exp (-2 x+\log |2 x+1|)=K(2 x+1) e^{-2 x}
$$

(2 points)

Finally, integration by parts gives

$$
c(x)=\int K(2 x+1) e^{-2 x}=-K(x+1) e^{-2 x}+C
$$

An obvious choice for the constants is $K=-1$ and $C=0$ which gives $u_{2}(x)=$ $x+1$ as a second solution.
(2 points)
Clearly, u_{1} and u_{2} are linearly independent since an exponential function is not a constant multiple of a linear function.
(1 point)

Solution of Problem 6 (15 points)

The case $\lambda=0$. This gives the general solution $u=c_{1} x+c_{2}$. The boundary conditions imply that

$$
\left[\begin{array}{rr}
-1 & 1 \\
\pi-1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Since the coefficient matrix has nonzero determinant we conclude that $c_{1}=c_{2}=0$ which only gives the trivial solution $u=0$. Therefore, $\lambda=0$ is not an eigenvalue.

(3 points)

The case $\lambda<0$. If we write $\lambda=-\mu^{2}$ then we get the general solution

$$
u=c_{1} e^{\mu x}+c_{2} e^{-\mu x}
$$

The boundary conditions imply that

$$
\left[\begin{array}{cc}
1-\mu & 1+\mu \\
(1-\mu) e^{\mu \pi} & (1+\mu) e^{-\mu \pi}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

(2 points)

For the existence of nontrivial solutions we need the determinant of the coefficient matrix to be zero:

$$
\left(1-\mu^{2}\right)\left(e^{-\mu \pi}-e^{\mu \pi}\right)=0 \quad \Leftrightarrow \quad \mu= \pm 1
$$

Taking $\mu=1$ gives the eigenvalue $\lambda_{0}=-1$ and the corresponding eigenfunction $u_{0}=e^{x}$.
(4 points)

The case $\lambda>0$. If we write $\lambda=\mu^{2}$ then we get the general solution

$$
u=c_{1} \cos (\mu x)+c_{2} \sin (\mu x)
$$

The boundary conditions imply that

$$
\left[\begin{array}{cc}
1 & -\mu \\
\cos (\mu \pi)+\mu \sin (\mu \pi) & \sin (\mu \pi)-\mu \cos (\mu \pi)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

(2 points)

For the existence of nontrivial solutions we need the determinant of the coefficient matrix to be zero:

$$
\left(1+\mu^{2}\right) \sin (\mu \pi)=0 \quad \Leftrightarrow \quad \mu \in \mathbb{Z}
$$

Taking $\mu=n \in \mathbb{N}$ gives the eigenvalues $\lambda_{n}=n^{2}$ and the corresponding eigenfunctions $u_{n}=n \cos (n x)+\sin (n x)$.
(4 points)

